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Abstract

We propose to detect singular features in order to gen-
erate an intelligent summary of high resolution spatio-
temporal data that are obtained from satellite-based obser-
vations of the ocean. Toward this objective, we extend the
Horn-Schunck model of flow field computation to incorpo-
rate incompressibility for tracking fluid motion. This is ex-
pressed as a zero-divergence constraint in the variational
problem and an efficient multigrid implementation of it is
introduced. Additionally, we show an effective localization
of event features, such as vortices and saddle points, in the
velocity field that can be used for subsequent abstraction,
query and statistical analysis.

1 Introduction

Current environmental satellites provide oceanographic
images with different types of telemetry data. The data is
time-varying and often sparse. These data are calibrated and
interpolated to generate dense geophysical fields, such as
sea surface temperature (SST) data. Currently, the amount
of raw data is a modest 3-4 Gigabytes/day, but it is expected
to grow to 200Gbytes/day in the short term. Our aim is to
create an intelligent summary of the time-varying data that
also aids to observe short term oceanic evolution. Toward
this end, we have focused to localize singular events, such
as vortices and saddle points, from the spatio-temporal im-
ages. The ocean vortices are an important component of
global circulation because they are an efficient transport and
mixing mechanism for salt/freshwater, heat, plankton com-
munities, nutrients, and momentum. On the other hand,
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Figure 1. An example of SST image

saddle points are nonlinear points that are highly chaotic.
Their presence has recently been noticed, which should aid
in better understanding of oceandynamics.

Our focus is on extracting singular features from SST
data. An example of SST data is shown in Figure 1. These
singular points are computed from the underlaying feature
velocities that are normal to iso-thermals. This work con-
sists of two major parts: flow computation and feature de-
tection. Our model of flow computation is novel in that
it uses an incompressibility constraint to track fluid mo-
tion. This is a generalization of the classic optical flow
model proposed by Horn and Schunck [6]. A multigrid
strategy is then used for efficient implementation of the
Euler-Lagrange equation. Singular points are then localized
through the use of the Jordan curve index.

This paper is organized as follows. In Section 2, we re-
view previous research in tracking fluid velocities and fea-
ture extraction. Sections 3 provide the details of our ap-
proach, including flow computation, feature detection, and
experimental results on real data. Section 4 concludes the
paper.

2 Previous Work

This section briefly reviews previous research in tracking
of fluid motion and related work in feature extraction from
vector field.



Measurement and analysis of feature velocities is often
referred to computation of optical flow in the imaging liter-
ature. Review and enhancement of these techniques can be
found in [3, 7]. However, tracking fluid motion poses addi-
tional constraints that has been addressed by only a few pa-
pers. In this context, we are not interested in tracking com-
pressible fluid that focuses on clouds or images obtained
from turbulent flows [9, 13]. These systems pose an affine
model over the time varying imagery and ignore the inher-
ent incompressibility constraint.

Cohen and Herlin [4] proposed a non-quadratic regu-
larization technique for solving the optical flow constraint
equation and applied it to oceanographic images. Their
approach is applicable to irregularly spaced images with
missing data. The regularization problem was solved by fi-
nite difference methods with finer tessellation near the mo-
tion boundary. Their method does not incorporate any con-
straints imposed by the fluid motion. Amini [1] extended
the Horn-Schunck equation to include fluid X-ray images
of contrast velocity in arteries. This was expressed in terms
of zero divergence of flow field tosimplify the solution. A
major drawback of his approach is that the corresponding
partial differential equations are of a higher order. Tistarelli
[11] proposed an optical flow algorithm using multiple con-
straints in which a non-iterative least square estimation is
used to compute the velocity vectors.

Raw oceanic data consists of satellite swath data and ar-
tifacts introduced by clouds. Modern oceanic processes per-
form cloud removal and time-space interpolation to produce
dense data for daily, regional, and global fields. These data
are then calibrated with in-situ measurements to produce a
dense temperature map at each point on the oceanic grid.
Dense oceanic data is the starting point for the proposed
analysis that should satisfy the fluid incompressibility con-
straint. Additionally, because the data resides in the spher-
ical coordinate system, special treatment is needed. Our
formulation operates on dense data, does not require solu-
tion of higher order PDEs, and it has been implemented in
a multigrid framework for better computational efficiency.

With respect to feature extraction from vector field, pre-
vious approaches rely on eigenvalue analysis from the lo-
cal Jacobian [10, 12]. Our experience indicates that feature
extraction is highly dependent on the smoothness of flow
computation. If the flow field is regularized (as it is in our
case) then events of interest can be easily localized. We
will present an elegant approach for detection of vortices
and saddle points that has proved to work effectively for
our data sets.

3 Approach

This section outlines algorithms and their implementa-
tion for computing feature velocities from consecutive im-

Figure 2. Critical points with non-zero diver-
gence: (left) a sink; (right) a source.

ages of sea surface temperature data and to localize singular
events (saddle points and vortices) from velocity fields.

3.1 Computation of feature velocities

Let I(x; y; t) be the image at timet, with (u; v) as the
velocity vector at each point. The flow field equation with
brightness constancy assumption is given by:

dI(x; y; t)

dt
= Ixu+ Iyv + It = 0 (1)

where the subscriptsx, y, andt represent the partial deriva-
tives. Horn and Schunck [6] constrained the problem by
incorporating local smoothness in the flow. This is given
by:

(u�; v�) = argminE :=
R R

(Ixu+ Iyv + It)
2

+�(jruj2 + jrvj2)dxdy
(2)

where� is the weighting factor of the smoothness term.
Note that spherical coordinates should be used in this equa-
tion. We will discuss the problem of coordinate transforma-
tion later. The velocity vector due to (incompressible) fluid
motion has to have zero divergence at each point:

ux + vy = �wz (3)

Sincew is difficult to estimate, the above constraint is ap-
plied in a weak sense, e.g.,ux + vy = 0. In this con-
text, incompressibility is enforced along the temperature-
gradient (normal to iso-thermals). A vector field with zero-
divergence does not contain sinks and sources. A counter-
example is shown in Fig. 2. This constraint is expressed as
a penalty term in the energy functional:

(u�� ; v
�

�) = argminE := 1
2

R R
[(Ixu+ Iyv + It)

2

+ �(jruj2 + jrvj2) + �(ux + vy)
2]dxdy

(4)
If � is large enough, then(u��; v

�

�) is a good approximation
of the constrained optimization problem formulated as:

(u�; v�) = argminE :=
R R

(Ixu+ Iyv + It)
2

+�(jruj2 + jrvj2)dxdy
s:t: ux + vy = 0

(5)



The Euler-Lagrange equations of (4) are�
�Ix(Ixu+ Iyv + It) + (�+ �)uxx + �uyy + �vxy = 0
�Iy(Ixu+ Iyv + It) + �vxx + (�+ �)vyy + �uxy = 0

(6)
To solve the above PDE-s, we will introduce an algorithm
based on finite difference method below.

Recall thatu’s (and similarlyv’s) finite difference ap-
proximations are [8]:

uxxjj;i = (uj+h;i + uj�h;i � 2uj;i)=h
2

uyyjj;i = (uj;i+h + uj;i�h � 2uj;i)=h
2

uxyjj;i =
1

4h2
(uj+h;i+h + uj�h;i�h � uj+h;i�h � uj�h;i+h)

(7)
Substituting them into Eq. (6), we have�

(I2x +
4�+2�

h2
)uj;i + IxIyvj;i = �1

IxIyuj;i + (I2y +
4�+2�

h2
)vj;i = �2

(8)

where

�1 = �IxIt +
�+�

h2
(uj+h;i + uj�h;i) +

�
h2
(uj;i+h+

uj;i�h) +
�

4h2
(vj+h;i+h + vj�h;i�h � vj+h;i�h � vj�h;i+h)

�2 = �IyIt +
�
h2
(vj+h;i + vj�h;i) +

�+�

h2
(vj;i+h+

vj;i�h) +
�

h2

4
(uj+h;i+h + uj�h;i�h � uj+h;i�h � uj�h;i+h)

Representinguj;i andvj;i by �1 and�2, we have the
following iterative method:

(
u
(n+1)

j;i = 1
D
[(I2y +

4�+2�

h2
)�

(n)

1 � IxIy�
(n)

2 ]

v
(n+1)

j;i = 1
D
[�IxIy�

(n)
1 + (I2x +

4�+2�
h2

)�
(n)
2 ]

(9)

whereD = 4�+2�

h2
(Ix2+I2y )+(4�+2�

h2
)2, (u(n)j;i ; v

(n)

j;i ) is the
velocity field at then-th step. If this process converges then
(9) will become (8), which means that the optimal solution
has been found. The convergency of the iteration defined
by (9) is guaranteed, but due to space limitation, the proof
is not given here. Note that if� = 0 then this formulation
is identical to the original Horn-Schunck solution.

3.1.1 Multigrid approach

The solution to the above equations is achieved through
multigrid technique to reduce the computational complex-
ity. Let h be the window size where finite differences are
computed. Then by settingh = 2K; 2K�1; � � � ; 1 succes-
sively, we can propagate from coarse to fine grid through
simple linear interpolation and refinement. Linear interpo-
lation is used because motion is locally smooth. It simply
sets an initial condition for higher resolution computation
to take place. This multigrid method can be described as
follows:

� STEP 0.h = 2
K

� STEP 1. Repeat the following algorithm until it converges:

for (i = 0; i < M ; i = i+ h)

for (j = 0; j < N ; j = j + h) let�
uj;i =

1
D
[(I2y +

4�+2�

h2
)�

(n)

1 � IxIy�
(n)

2 ]

vj;i =
1
D
[�IxIy�

(n)

1 + (I2x +
4�+2�

h2
)�

(n)

2 ]

whereM �N is the image size.

� STEP 2. Linear interpolation.

for (i = 0; i < M ; i++)f

i0 = [i=h] � h; ri = (i� i0)=h;

for (j = 0; j < N ; j ++) f

j0 = [j=h] � h; rj = (j � j0)=h;

uj;i = (1� ri)(1� rj)uj0;i0 + ri(1� rj)uj0;i0+h+

(1� ri)rjuj0+h;i0 + rirjuj0+h;i0+h
vj;i = (1� ri)(1� rj)vj0;i0 + ri(1� rj)vj0;i0+h+

(1� ri)rjvj0+h;i0 + rirjvj0+h;i0+h
g g

� STEP 3. ifh = 1, stop; elseh = h=2, goto STEP 1.

Note that in STEP 1, all the pixels are updated asyn-
chronously and not simultaneously. Why is the asyn-
chronous iteration faster than the synchronous? An intuitive
explanation is that the pixels that have been updated will be
used to update their neighborhood. Even though this idea
is rather simple, it can speed up the convergence greatly. In
fact, it is a deterministic version of the classic Gibbs sam-
pler [5].

3.1.2 Coordinate Transformation

Initially, we expressed relevant equations in the Cartesian,
R2, as opposed to the Spherical coordinate system,S2, to
simplify the PDEs. This was justified because data are
high resolution (incremental longitude and latitude angles
are small). However, by weighting the second derivatives
with respect to their latitude, a closer results with ground
truth data is obtained. The finite differences are expressed
as:

uxxjj;i =
uj+h;i+uj�h;i�2uj;i

h2 cos2 i

uyyjj;i =
uj;i+h+uj;i�h�2uj;i

h2

uxyjj;i =
uj+h;i+h+uj�h;i�h�uj+h;i�h�uj�h;i+h

4h2 cos i

wherej andi are the longitude and latitude, respectively.

3.2 Evaluation of feature velocities

Both� and� of the regularization parameters are impor-
tant for accurate measurement of feature velocities. There is
a big difference betweenS2 andR2 in that their topological



structures are not homeomorphic. We have compared our
measurements with ground truth data (obtained from sur-
face drifters) and verified that our measurements are con-
sistent. For example, from Nov. 5, 1986 to Nov 18, 1997,
Aoki et al. [2] indicated a motion field of 3-5cm/sec to the
west from 35� to 40� N in the region 30� to 40�N and 140�

E to 170� W. Our measurements in the same area indicates
a motion of 3.0 to 3.5 cm/sec.

3.3 Detection of vortices and saddle points

Singularities in the flow field can provide a compact ab-
straction in the velocity field. This issue has been addressed
in literature [10], where an algorithm based on the analysis
of local Jacobian was proposed. Their approach is complex
due to the fact that the flow field is not regularized. Here,
we propose an alternative method for robust estimation of
event detection and subsequent tracking of singularities.

LetF = (u; v) be a vector field andJ be a Jordan curve
with no critical point on it. The index ofJ is defined by

Index(J) =
1

2�

I
J

udv � vdu

u2 + v2

Because it is not easy to localize the critical points, we com-
pute the index over the entire field. At each pointP , we
choose a small circleJP aroundP and compute Index(JP ).
The flow field(u; v) can then be classified according to:

1. The index of a vortex is equal to+1 (the classification
of singular points in a vector field is given in [10]),
and

2. The index of a saddle point is equal to�1.

There is no node in the vector field because of the zero-
divergence constraint, but singularities do occur. Recall that
a point(x; y) is singular iff�

u(x; y) = 0
v(x; y) = 0

(10)

However, using the above equation to localize singularities
leads to computational instability. A better approach is to
exploit the inherent local minimum velocity volume to sim-
plify the problem. Thus,

� Step 1: Find all local minimums of the velocity field:

S = f All the local minimums of
p
u(x; y)2 + v(x; y)2g

� Step 2:8(x; y) 2 S:

(1) Let R =
1
2
maxfrjS

T
Jr(x;y) = �g whereJr(x;y) is

the circle centered at(x; y) with radiusr.
(2) Compute the index ofJR(x;y), that is,

Index(JR(x;y)) =
1

2�

I
JR
(x;y)

udv � vdu

u2 + v2

(3) If Index(JR(x;y)) = 0, then (x;y) is not singu-

lar; if Index(JR(x;y)) = 1, then (x;y) is a vortex; if

Index(JR(x;y)) = �1, then(x; y) is a saddle point.

An Example of saddle points, observed in the Pacific, is
shown in Figure 3. This result indicates that saddle points
are not rare and they occur often in the oceanic flow. One
important characteristic of vortex is its “size.” Here, we
propose a simple definition. If a point a(x; y) is a vortex,
then its sizeR�(x; y) can be defined as:

R�(x; y) = maxfRjIndex(JR(x;y)) = 1g

that is to say,R�(x; y) is the largestR such that the index
of JR(x;y) keeps to be1.

Figure 3. Feature velocity of SST (in yellow),
magnitude of velocity (encoded with the un-
derlying intensity), vortices and their size (in
red block with blue circle for size), and saddle
points (in green) on the 100th day of 1990.

3.4 Experimental Results

Fig. 4 shows the feature velocities (date: the 200th day
of the year 1992) corresponding to a pair of SST data. Each
vortex is marked by red blocks. A circle drawn aroundeach
vortex indicates its size. The direction of feature velocities
are shown with yellow arrows. The magnitude of these ve-
locity vectors are shown with the underlying intensity dis-
tribution.



Figure 4. Feature velocities and computed
vortices: Feature directions are shown with
yellow arrows, and their corresponding mag-
nitudes are shown with the underlying bright-
ness map. Vortices are marked with a red
block, and their size is encoded with a blue
circle. This result is generated from a pair
of consecutive images around day 200 from
1992.

4 Conclusions

In this paper, we formulated motion computation in
oceanographic images as a constrained variational problem
with incompressibility constraint, which is generalization
of Horn-Schunck’s original work. A simple approach for
detection of singularities in the velocity field was proposed
and implemented. The proposed singularities capture perti-
nent short term oceanic evolution so that long term climatic
studies can be conducted in the feature space for better effi-
ciency and information content.
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